Understanding sub-20 nm breakdown behavior of liquid dielectrics.

نویسندگان

  • Kumar R Virwani
  • Ajay P Malshe
  • Kamlakar P Rajurkar
چکیده

Nanoscale confinement of dielectric molecules is expected to influence their breakdown mechanism in applications such as nanoprobe based machining, molecular electronics, and other related technologies. This Letter presents the first experimental study of the breakdown of nonpolar, nonthiolated liquid dielectrics in the nanometer regime and develops a field emission assisted avalanche based approach to model such behavior. The studies show that dielectric breakdown in the sub-20 nm regime is independent of the cathode materials and is dominated by the electron emission and atomic cluster migration due to the "sub-20 nm scale confinement of the liquid dielectric."

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heavy-Ion-Induced Breakdown in Ultra-Thin Gate Oxides and High-k Dielectrics

We present experimental results on single-event-induced breakdown in sub-5-nm plasma-enhanced SiO2, nitrided SiO2, Al2O3, HfO2, and Zr0 4Si1 6O4 dielectrics typical of current and future-generation commercial gate oxides. These advanced oxides are found to be quite resistant to ion-induced breakdown. Radiation-induced soft breakdown was observed in some films with 342 MeV Au (LET = 80 MeV/mg/cm...

متن کامل

Exploration of yttria films as gate dielectrics in sub-50 nm carbon nanotube field-effect transistors.

Thin yttria films were investigated for use as gate dielectrics in carbon nanotube field-effect transistors (CNTFETs) with the gate length scaled down to sub-50 nm size. The yttria film provided an omega-shaped gate dielectric with a low interface trap density, a low average sub-threshold swing of 74 mV per decade for both long and short CNTFETs, and a small drain-induced barrier lowering. It w...

متن کامل

Electrical breakdown and ESD phenomena for devices with nanometer-to-micron gaps

The current vs. voltage and electrical breakdown behavior for devices with micron and sub-micron gaps between conductors is studied. The limitations of the well-known but often-misinterpreted Paschen curve are discussed. The little-known modified Paschen curve, that includes field emission effects so important in understanding breakdown behavior for devices with sub-micron gaps, is described. C...

متن کامل

Breakdown and Reliability of CMOS Devices with Stacked Oxide/Nitride and Oxynitride Gate Dielectrics Prepared by RPECVD

Lee, Yi-Mu. Breakdown and reliability of CMOS devices with stacked oxide/nitride and oxynitride gate dielectrics prepared by RPECVD. (Under the direction of Professor Gerald Lucovsky) Remote-plasma-enhanced CVD (RPECVD) silicon nitride and silicon oxynitride alloys have been proposed to be the attractive alternatives to replace conventional oxides as the CMOS logic and memory technology node is...

متن کامل

Ultrathin Gate Oxide Reliability: Physical Models, Statistics, and Characterization

The present understanding of wear-out and breakdown in ultrathin ( 5 0 nm) SiO2 gate dielectric films and issues relating to reliability projection are reviewed in this article. Recent evidence supporting a voltage-driven model for defect generation and breakdown, where energetic tunneling electrons induce defect generation and breakdown will be discussed. The concept of a critical number of de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 99 1  شماره 

صفحات  -

تاریخ انتشار 2007